Friction Stir Welding of Al-Mg Alloys as a Replacement of Mg and Si consumables in GMAW and GTAW welding

Sebastian Balos, Miroslav Dramicanin, Petar Janjatovic, Danka Labus Zlatanovic, Leposava Sidjanin

Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

EXPERIMENTAL WORK

Gas Metal Arc Welding (GMAW) is a welding process, which uses an electric arc maintained between a continuously fed filler consumable wire and the parts to be welded.

Gas Tungsten Arc Welding (GTAW), also known as tungsten inert gas (TIG) welding is a process that produces an electric arc maintained between a nonconsumable tungsten alloy electrode and the parts to be welded.

The process uses inert or active shielding from an externally supplied gas to protect the molten weld pool.

Gas Metal Arc Welding

- Gas Metal Arc Welding (GMAW) is a welding process which uses an electric arc maintained between a continuously fed filler consumable wire and the parts to be welded.
- The process uses inert or active shielding from an externally supplied gas to protect the molten weld pool.

Gas Tungsten Arc Welding

- Gas Tungsten Arc Welding (GTAW) is a welding process that produces an electric arc maintained between a nonconsumable tungsten alloy electrode and the parts to be welded.
- The process uses active shielding from an externally supplied gas to protect the molten weld pool.

RESULTS

Mechanical properties of EN-AW 5052-00

<table>
<thead>
<tr>
<th>Proof strength $R_{p0.2}$ (MPa)</th>
<th>Ultimate tensile strength $R_{m}(MPa)$</th>
<th>Elongation A_{s}(%)</th>
<th>Vickers hardness number H_{V}</th>
</tr>
</thead>
<tbody>
<tr>
<td>124±10</td>
<td>193±3</td>
<td>22±1</td>
<td>60±1</td>
</tr>
</tbody>
</table>

Chemical composition of EN-AW 5052-0 aluminium alloy (in weight %)

- Cu: 0.09
- Mn: 0.09
- Mg: 2.78
- Si: 0.24
- Fe: 0.38
- Zn: 0.046
- Ti: 0.015
- Al: bal.

Chemical composition of X38CrMoV5-1 tool steel (in weight %)

- C: 0.37
- Si: 1.01
- Mn: 0.38
- P: 0.017
- S: 0.005
- Cr: 4.85
- Mo: 1.23
- V: 0.32
- Fe: bal.

CONCLUSIONS

According to the presented results, some conclusions can be drawn:

- Higher mechanical properties were obtained with lower welding speeds and with the tool with reservoir to pin ratio of 0.5.
- The highest ultimate tensile strength was 3% higher, while the yield strength was 25% higher compared to the base material, considerably higher than the values obtainable with GMAW and GTAW processes.
- The same tool resulted in more uniform weld hardness values, due to a wider central part of the stir zone, but also in a higher roughness parameters.
- The flexibility of the FSW process and welding speeds are considerably lower than in arc welding.