Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

Magdalena Szutkowska¹, Marek Boniecki², Sławomir Cygan¹, Andrzej Kalinka¹

¹ Institute of Advanced Manufacturing Technology, Cracow, Poland.
² Institute of Electronic Materials Technology, Warsaw, Poland.
China is currently the largest tungsten producer, accounting for about 84% of world production in 2012. It is followed by Russia, Canada, Austria, Bolivia, Portugal and a number of smaller producers. China has also the largest reserves according to the USGS accounting for 59% of world reserves.
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA COST Action CA15102

Properties of tool materials

End users of machine tools

Estimation of the main tool materials use on the global basis
So the main goal of the research work is:

-modification of WC-Co hardmetals towards the partial substitution of tungsten carbide (WC) by addition of TiC ceramics
EXPERIMENTAL PROCEDURE

WC-9.5 wt% Co with addition of TiC

- Commercial powder YK.15,6
 - Chongyi Zhangyuan Tungsten Co. Ltd
 - 3.42 μm grade

- TiC powder obtained by SHS
 - 4.46 μm grade

Properties

- **Density [g/cm³]**: 4.92 → 15.72
- **Hardness HV [GPa]**: 28-35 → 17-24
- **Young’s Modulus [GPa]**: 410-510 → 620-720
- **Melting temperature [°C]**: 3340 → 3050
TiC powders at 5, 10, 20 wt% were mixed into WC-Co powder

specimens 5.0x6.5x20 mm

sintering at the temperature 1573 K, pressure 1500 atm

HIP (Hot Isostatic Pressing) GONAR Firm
EXPERIMENTAL PROCEDURES

Table 1. Physical and mechanical properties of tested composites

<table>
<thead>
<tr>
<th>Samples</th>
<th>Sample symbol</th>
<th>Vickers hardness HV30 [GPa]</th>
<th>Young’s modulus E [GPa]</th>
<th>Apparent density ρ [g/cm³]</th>
<th>Poisson ratio ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-Co +5wt%TiC</td>
<td>H5</td>
<td>12.7±0.2</td>
<td>549±20</td>
<td>13.09±0.03</td>
<td>0.22±0.01</td>
</tr>
<tr>
<td>WC-Co +10wt%TiC</td>
<td>H10</td>
<td>13.1±0.2</td>
<td>519±20</td>
<td>11.81±0.02</td>
<td>0.23±0.01</td>
</tr>
<tr>
<td>WC-Co +20wt%TiC</td>
<td>H20</td>
<td>13.9±0.2</td>
<td>458±20</td>
<td>9.60±0.03</td>
<td>0.22±0.01</td>
</tr>
<tr>
<td>WC-Co</td>
<td>H0</td>
<td>9.6±0.15</td>
<td>542±20</td>
<td>13.52±0.02</td>
<td>0.22±0.01</td>
</tr>
</tbody>
</table>
FRACTURE TOUGHNESS SPECIMENS

SEN'B

1.5×4.0×20.0±0.1 mm specimens
mechanically notched:

double notch

- 0.9 mm deep, 0.2 mm width
- 0.2 mm deep, 0.025 mm width

3PB with rate 1 μm min⁻¹
Stress intensity factor K_{IC} was calculated from the equation (1)

$$K_{IC} = 1.5 \frac{PL}{W^2 B} Y_c^{1/2}$$

where: P – critical load, L – roller distance, W–specimen width, B-specimen thickness, Y – geometric function calculated according to equation (2) c – crack length

$$Y = \frac{\sqrt{\Pi}}{(1 - \beta)^3} \left[0.3738 \beta + (1 - \beta) \sum_{i, j=0}^{4} A_{ij} \beta^i \left(\frac{W}{S} \right)^j \right]$$

where: c is the crack length, β is the c/W A_{ij} are the coefficients given by Fett
EXPERIMENTAL PROCEDURES

Fracture toughness

<table>
<thead>
<tr>
<th>Specimen</th>
<th>WC-Co+5wt% TiC</th>
<th>WC-Co+10wt% TiC</th>
<th>WC-Co+20wt% TiC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H5</td>
<td>H10</td>
<td>H20</td>
</tr>
<tr>
<td>K_{IC} [MPa·m$^{1/2}$]</td>
<td>16.8</td>
<td>14.0</td>
<td>11.1</td>
</tr>
<tr>
<td>$K_{IC(HV)}$ [MPa·m$^{1/2}$]</td>
<td>12.0</td>
<td>10.9</td>
<td>9.0</td>
</tr>
</tbody>
</table>

$k_{IC(HV)} = 0.035 \left(\sqrt{H} \right) \left(\frac{E \phi}{H} \right)^{2/5} \left(\frac{l}{a} \right)^{-1/2}/\phi$
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA COST Action CA15102

Surface distribution of elements (EDS technique)

SEM image of H0

Surface distribution of elements (EDS technique)
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA COST Action CA15102

SEM image of H10

Surface distribution of elements (EDS technique)
Quantitative analysis of elements distributed on the surface of $\text{H10} \xrightarrow{\text{EDS}}$

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>C</th>
<th>Ti</th>
<th>Co</th>
<th>W</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum 1</td>
<td>6.4</td>
<td>-</td>
<td>90.5</td>
<td>3.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 2</td>
<td>7.5</td>
<td>-</td>
<td>84.6</td>
<td>7.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 3</td>
<td>12.7</td>
<td>-</td>
<td>-</td>
<td>87.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 4</td>
<td>10.2</td>
<td>-</td>
<td>-</td>
<td>89.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 5</td>
<td>13.7</td>
<td>24.0</td>
<td>-</td>
<td>62.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 6</td>
<td>13.1</td>
<td>24.7</td>
<td>-</td>
<td>62.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA COST Action CA15102

SEM image of H20

Surface distribution of elements (EDS technique)
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA15102

Quantitative analysis of elements distributed on the surface of H2O EDS

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>C</th>
<th>Ti</th>
<th>Co</th>
<th>W</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum 1</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
<td>88.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 2</td>
<td>11.6</td>
<td>-</td>
<td>-</td>
<td>88.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 3</td>
<td>8.8</td>
<td>2.9</td>
<td>80.0</td>
<td>8.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 4</td>
<td>7.7</td>
<td>1.5</td>
<td>84.9</td>
<td>5.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 5</td>
<td>14.7</td>
<td>24.9</td>
<td>-</td>
<td>60.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 6</td>
<td>14.0</td>
<td>25.3</td>
<td>-</td>
<td>60.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 7</td>
<td>24.0</td>
<td>68.4</td>
<td>-</td>
<td>7.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Spectrum 8</td>
<td>24.2</td>
<td>56.9</td>
<td>-</td>
<td>18.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Friction coefficient of WC-Co with 10wt% TiC
XRD DIFFRACTION PATTERNS of WC-Co with 10wt% TiC
CONCLUSION

Values of mechanical properties recorded for WC-Co with 5wt%-10wt% TiC:

- Fracture toughness 14.0-17.0 MPa·m$^{1/2}$
- Young's modulus 520-550 MPa
- Vickers hardness about 13 GPa

ACKNOWLEDGEMENT
Authors are grateful for the financial support of project INNOTECH K2/IN2/20/181971/NCBR/13 granted by NCBR and COST Action CA15102
Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME) CA COST Action CA15102

Thank you for attention